Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jin Mizuguchi

Department of Applied Physics, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, 240-8501 Yokohama, Japan

Correspondence e-mail: mizu-j@ynu.ac.jp

Key indicators

Single-crystal X-ray study
$T=93 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.042$
$w R$ factor $=0.075$
Data-to-parameter ratio $=13.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Di-tert-butyl 7,14-dihydro-7,14-dioxo-quino[2,3-b]acridine-5,12-dicarboxylate

The title compound, $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}$, is a soluble precursor ('latent pigment') of quinacridone pigments. The molecule has inversion symmetry. The tert-butoxycarbonyl group attached to the N atom of the acridine skeleton is twisted by 55.57 (8) ${ }^{\circ}$ from the heterocyclic ring to which it is attached. The condensed ring system is not entirely planar, and the dihedral angle between the cental benzene ring and the neighboring ring is $174.56(6)^{\circ}$.

Comment

The title compound, (I), is a soluble yellow precursor ('latent pigment') (Zambounis et al., 1994, 1997) of quinacridone pigments (QA) (Herbst \& Hunger, 1997) that are known as industrially important red pigments. The soluble precursor is prepared by replacing the H atom of the NH group with a tertbutoxycarbonyl (t-BOC) group, hereafter called t-BOC QA. The insoluble parent QA can then be regenerated by thermochemical treatment of the precursor. The present 'latent pigment technology' is a versatile and promising technique for the preparation of nano pigment particles, as well as transparent pigmented thin films, etc. The crystal structure of the parent QA has previously been reported by Potts et al. (1994) and by us (Mizuguchi et al., 2002). The present paper describes the crystal structure of t-BOC QA, (I).

The title compound crystallizes in space group $P 2_{1} / n$ and the molecule has inversion symmetry (Fig. 1). Each t-BOC group is twisted with respect to the corresponding heterocyclic ring by $55.57(8)^{\circ}(\mathrm{N} 1 / \mathrm{C} 11 / \mathrm{O} 2 / \mathrm{O} 3$ and $\mathrm{N} 1 / \mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 10)$. The condensed ring system is not entirely planar. The dihedral angles between two condensed rings are $174.56(6)^{\circ}[\mathrm{N} 1 / \mathrm{C} 1 /$ $\mathrm{C} 2 / \mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 10$ and $\mathrm{C} 8-\mathrm{C} 10 / \mathrm{C} 8^{\mathrm{i}}-\mathrm{C} 10^{\mathrm{i}}$; symmetry code: (i) $1-x,-y, 1-z]$ and 179.11 (8) ${ }^{\circ}(\mathrm{N} 1 / \mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 10$ and $\mathrm{C} 2-\mathrm{C} 7$). The molecules are stacked along the a axis.

Experimental

The title compound (I) was prepared according to the method described in the literature (Zambounis et al., 1994). Single crystals of (I) were grown from an acetonitrile solution.

Received 21 February 2003
Accepted 5 March 2003
Online 21 March 2003

Figure 1

A view of the molecular structure of (I), showing ellipsoids at the 50% probability level for non-H atoms.

Crystal data

$\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}$
$M_{r}=512.56$
Monoclinic, $P 2_{1} / n$
$a=14.020(2) \AA$
$b=6.5225(8) \AA$
$c=14.153(2) \AA$
$\beta=106.704(9)^{\circ}$
$V=1239.6(3) \AA^{3}$
$Z=2$
$D_{x}=1.373 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} \mathrm{K} \alpha$ radiation
Cell parameters from 8483
\quad reflections
$\theta=3.3-68.1^{\circ}$
$\mu=0.79 \mathrm{~mm}^{-1}$
$T=93.2 \mathrm{~K}$
Pseudo-hexagonal prism, colorless
$0.15 \times 0.15 \times 0.10 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID Imaging
Plate diffractometer
ω scans; 48 frames, $\Delta \omega=15^{\circ}$
Absorption correction: multi-scan
(Higashi, 1995)
$T_{\text {min }}=0.791, T_{\text {max }}=0.924$
10974 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.075$
$S=1.22$
2240 reflections
172 parameters

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

O1-C1	$1.229(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.406(3)$
O2-C11	$1.198(3)$	$\mathrm{C} 2-\mathrm{C} 7$	$1.398(3)$
O3-C11	$1.331(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.371(3)$
O3-C12	$1.504(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.401(3)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.410(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.377(3)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.413(3)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.411(3)$
$\mathrm{N} 1-\mathrm{C} 11$	$1.439(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.393(3)$
C1-C2	$1.474(3)$	$\mathrm{C} 8-\mathrm{C} 10$	$1.403(3)$
$\mathrm{C} 1-\mathrm{C} 10$	$1.474(3)$	$\mathrm{C} 9-\mathrm{C} 10^{\mathrm{i}}$	$1.384(3)$
$\mathrm{O} 2-\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 7$	$-56.1(3)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3$	$178.2(2)$
$\mathrm{O} 2-\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 8$	$127.2(2)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$-176.6(2)$
$\mathrm{O} 3-\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 7$	$122.9(2)$	$\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 8-\mathrm{C} 9$	$-178.7(2)$
$\mathrm{O} 3-\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 8$	$-53.7(3)$		

Symmetry code: (i) $1-x,-y, 1-z$.

All H atoms were positioned geometrically and refined as riding.
Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: TEXSAN (Molecular Structure Corporation, 2001); program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: TEXSAN; molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: TEXSAN.

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Herbst, W. \& Hunger, K. (1997). Industrial Organic Pigments, 2nd ed. Weinheim: VCH.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Mizuguchi, J., Sasaki, T. Tojo, K. (2002). Z. Kristallogr. New Cryst. Struct. 217, 247-248.
Molecular Structure Corporation (2001). TEXSAN. Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Potts, G. D., Jones, W., Bullock, J. F., Andrews, S. J. \& Maginn, S. J. (1994). J. Chem. Soc. Chem. Commun. pp. 2565-2566.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger and R. Goddard, pp. 175-189. Oxford University Press.
Zambounis, J., Hao, H. \& Iqbal, A. (1994). US Patent 5484943.
Zambounis, J., Hao, H. \& Iqbal, A. (1997). Nature (London), 388, 131-132.

